辽宁省六校协作体2017-2018学年高二下学期理数期中考试试卷

年级: 学科:数学 类型:期中考试 来源:91题库

一、单选题(共12小题)

1、已知命题 ,则命题 的否定是(   )
A . B . C . D .
2、已知 都是实数,“ ”是“ ”的 (   )
A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件
3、“所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于(   )
A . 演绎推理 B . 类比推理 C . 合情推理 D . 归纳推理
4、已知复数 的共轭复数,则 的虚部等于(   )
A . 2 B . C . D .
5、 展开式中的常数项是 (   )
A . B . C . D .
6、若 是自然对数的底数,则 (   )
A . B . C . D .
7、已知实数 满足 ,用反证法证明:

中至少有一个小于0.下列假设正确的是 (   )

A . 假设 至多有一个小于0 B . 假设 中至多有两个大于0 C . 假设 都大于0 D . 假设 都是非负数
8、函数 有极值点,则 的取值范围为(   )
A . B . C . D .
9、学校艺术节对同一类的 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“ 作品获得一等奖”;

乙说:“ 作品获得一等奖”;

丙说:“ 两项作品未获得一等奖”;

丁说:“ 作品获得一等奖”.

若这四位同学只有两位说的话是对的,则获得一等奖的作品是(   )

A . B . C . D .
10、已知正四棱柱 中, 的中点,则异面直线 所成角的余弦值为(   )
A . B . C . D .
11、张、王夫妇各带一个小孩儿到上海迪士尼乐园游玩,购票后依次入园,为安全起见,首尾一定要排两位爸爸 ,另外两个小孩要排在一起,则这6个人的入园顺序的排法种数是(    )
A . 12 B . 24 C . 36 D . 48
12、过双曲线 的左焦点 作圆 的切线,切点为E , 延长FE交抛物线 于点P , 若E为线段FP的中点,则双曲线的离心率为 (    )
A . B . C . D .

二、填空题(共4小题)

1、抛物线 的焦点到双曲线 的渐近线的距离为      
2、直线 是曲线 的一条切线,则实数 的值为      
3、三角形面积 为三边长, ),又三角形可以看作是四边形的极端情形(即四边形的一边长退化为零).受其启发,请你写出圆内接四边形的面积公式:      
4、若 ,则 的值为      

三、解答题(共7小题)

1、给定命题 :对任意实数 都有 成立; :关于 的方程 有实数根.如果 为真命题, 为假命题,求实数 的取值范围.
2、是否存在常数 使得等式 对一切正整数 都成立?若存在,求出 值,并用数学归纳法证明你的结论;若不存在,请说明理由.
3、四棱锥 ,底面 为平行四边形,侧面 底面 .已知 为线段 的中点.

(1)求证: 平面
(2)求平面 与平面 所成锐二面角的余弦值.
4、已知圆 ,圆 ,动圆 与圆 外切并且与圆 内切,圆心 轨迹为曲线
(1)求曲线 的方程;
(2)若 是曲线 上关于 轴对称的两点,点 ,直线 交曲线

于另一点 ,求证:直线 过定点,并求该定点的坐标.

5、函数 ,其中
(1)试讨论函数  的单调性;
(2)已知当 (其中  是自然对数的底数)时,在  上至少存在一点 ,使  成立,求  的取值范围;
(3)求证:当  时,对任意 ,有
6、在极坐标系中,点 坐标是 ,曲线 的方程为 ;以极点为坐标原点,极轴为 轴的正半轴建立平面直角坐标系,斜率是 的直线 经过点
(1)写出直线 的参数方程和曲线 的直角坐标方程;
(2)求证直线 和曲线 相交于两点 ,并求 的值.
7、设关于 的不等式
(1)若 ,求此不等式解集;
(2)若此不等式解集不是空集,求实数 的取值范围.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 辽宁省六校协作体2017-2018学年高二下学期理数期中考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;