湖北省十堰市2018年中考数学试卷
年级: 学科:数学 类型:中考真卷 来源:91题库
一、选择题(共10小题)
1、在0,﹣1,0.5,(﹣1)2四个数中,最小的数是( )
A . 0
B . ﹣1
C . 0.5
D . (﹣1)2
2、如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是( )
A . 62°
B . 108°
C . 118°
D . 152°
3、今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是( )
A .
B .
C .
D .




4、下列计算正确的是( )
A . 2x+3y=5xy
B . (﹣2x2)3=﹣6x6
C . 3y2•(﹣y)=﹣3y2
D . 6y2÷2y=3y
5、某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:
鞋的尺码/cm | 23 | 23.5 | 24 | 24.5 | 25 |
销售量/双 | 1 | 3 | 3 | 6 | 2 |
则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )
A . 24.5,24.5
B . 24.5,24
C . 24,24
D . 23.5,24
6、菱形不具备的性质是( )
A . 四条边都相等
B . 对角线一定相等
C . 是轴对称图形
D . 是中心对称图形
7、我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为( )
A .
B .
C .
D .
=





8、如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )
A . 2
B .
C . 5
D .




9、如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交
于点D,以OC为半径的
交OA于点E,则图中阴影部分的面积是( )


A . 12π+18
B . 12π+36
C . 6
D . 6




10、如图,直线y=﹣x与反比例函数y=
的图象交于A,B两点,过点B作BD∥x轴,交y轴于点D,直线AD交反比例函数y=
的图象于另一点C,则
的值为( )



A . 1:3
B . 1:2
C . 2:7
D . 3:10

二、填空题(共6小题)
1、北京时间6月5日21时07分,中国成功将风云二号H气象卫星送入预定的高度36000km的地球同步轨道,将36000km用科学记数法表示为 .
2、函数
的自变量x的取值范围是 .

3、如图,已知▱ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为 .
4、对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为 .
5、如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为 .
6、如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6
,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为 .

三、解答题(共9小题)
1、计算:|﹣
|﹣2﹣1+


2、化简:
﹣
÷



3、如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:
≈1.414,
≈1.732,结果取整数).


4、今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:
等级 | 成绩(s) | 频数(人数) |
A | 90<s≤100 | 4 |
B | 80<s≤90 | x |
C | 70<s≤80 | 16 |
D | s≤70 | 6 |
根据以上信息,解答以下问题:
(1)表中的x= ;
(2)扇形统计图中m= ,n= ,C等级对应的扇形的圆心角为 度;
(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1 , a2表示)和两名女生(用b1 , b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.
5、已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.
(1)求k的取值范围;
(2)若此方程的两实数根x1 , x2满足x12+x22=11,求k的值.
6、为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:
(1)求y与x之间的函数关系式;
(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?
7、如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作FG⊥AC于点F,交AB的延长线于点G.
(1)求证:FG是⊙O的切线;
(2)若tanC=2,求
的值.

8、已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.
(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;
(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;
(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.
9、已知抛物线y=
x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.

(1)求抛物线的解析式;
(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC , 求证:AP∥BC;
(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.