吉林省长春德惠市2016-2017学年九年级上学期数学期末考试试卷
年级: 学科:数学 类型:期末考试 来源:91题库
一、单选题(共8小题)
1、如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( )
A . ∠ABP=∠C
B . ∠APB=∠ABC
C .
D .


2、
如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα= , 则“人字梯”的顶端离地面的高度AD是( )
A . 144cm
B . 180cm
C . 240cm
D . 360cm
3、关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是( )
A . k>﹣1
B . k>1
C . k≠0
D . k>﹣1且k≠0
4、下列运算中错误的是( )
A .
+
=
B .
×
=
C .
÷
=2
D .
=3









5、二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是( )
A . 1
B . 2
C . 3
D . 4
6、不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )
A . 摸出的是3个白球
B . 摸出的是3个黑球
C . 摸出的是2个白球、1个黑球
D . 摸出的是2个黑球、1个白球
7、一元二次方程x2+3x+2=0的两个根为( )
A . 1,﹣2
B . ﹣1,﹣2
C . ﹣1,2
D . 1,2
8、在如图的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B、C两点坐标分别为(-1,-1),(1,-2),将△ABC绕点C顺时针旋转90°,则A点的对应点坐标为( )
A . (4,1)
B . (4,-1)
C . (5,1)
D . (5,-1)
二、填空题(共5小题)
1、将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为 .
2、若
+a=0,则a的取值范围为 .

3、有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是 .
4、如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行 海里与钓鱼岛A的距离最近。
5、如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI= .
三、解答题(共9小题)
1、计算。
(1)
-(
﹣π)0﹣2
sin60°.



(2)(3
﹣2
+
÷2
).




2、如图,在∠ABC中,∠B=30°,AC=
,等腰直角△ACD斜边AD在AB边上,求BC的长.

3、如图,在四边形ABCD中,∠ABC=90°,AC=AD,M、N分别为AC、CD的中点,连接BM、MN、BN.求证:BM=MN.
4、如图,在热气球上A处测得塔顶B的仰角为52°,测得塔底C的俯角为45°,已知A处距地面98米,求塔高BC.(结果精确到0.1米)
【参考数据:sin52°=0.79,cos52°=0.62,tan52°=1.28】
5、如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3 .
(1)△ABC与△A1B1C1的位似比等于 ;
(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;
(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?
(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为 .
6、甲、乙两校分别有一男一女共4名教师报名到农村中学支教.
(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 .
(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.
7、2013年,某市一楼盘以毎平方米5000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金的周转,决定进行降价促销,经过连续两年的下调后,2015年的均价为每平方米4050元.
(1)求平均每年下调的百分率;
(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金45万元,张强的愿望能否实现?(房价每平方米按照均价计算)
8、如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且
.

(1)求证:△ADF∽△ACG;
(2)若
,求
的值.


9、如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)连接OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.