安徽省江淮十校2018届高三文数第三次(4月)联考试卷

年级: 学科:数学 类型: 来源:91题库

一、选择题(共12小题)

1、已知集合 ,则 (   )
A . B . C . D .
2、若纯虚数 满足 ,则实数 等于(   )
A . B . C . D .
3、已知函数 最小正周期为 ,为了得到函数 的图象,只要将 的图象(   )
A . 向左平移 个单位长度 B . 向右平移 个单位长度 C . 向左平移 个单位长度 D . 向右平移 个单位长度
4、下列命题中,真命题是(   )
A . ,有 B . C . 函数 有两个零点 D . 的充分不必要条件
5、若数列 的通项公式是 ,则 (   )
A . B . C . D .
6、执行如图所示的程序框图,当输入的 时,输出的结果不大于 的概率为(   )

A . B . C . D .
7、已知 ,则 (   )
A . B . C . D .
8、若双曲线 的离心率为 ,则双曲线的渐近线方程是(   )
A . B . C . D .
9、《九章算术》是我国古代内容极为丰富的数学名著,书中提出如下问题:“今有刍童,下广两丈,袤三丈,上广三丈,袤四丈,高三丈,问积几何?”翻译成现代文是“今有上下底面皆为长方形的草垛,下底(指面积较小的长方形)宽 丈,长 丈;上底(指面积较大的长方形)宽 丈,长 丈;高 丈.问它的体积是多少?”现将该几何体的三视图给出如图所示,则该几何体的体积为( )立方丈.

A . B . C . D .
10、若直角坐标系内 两点满足:(1)点 都在 图象上;(2)点 关于原点对称,则称点对 是函数 的一个“和谐点对”, 可看作一个“和谐点对”.已知函数 ,则 的“和谐点对”有(   )
A . B . C . D .
11、设 是椭圆 的左、右焦点,过 的直线 交椭圆于 两点,若 ,且 轴,则椭圆的离心率等于(   )
A . B . C . D .
12、已知函数 ,函数 ,若对任意 ,总存在 ,使 ,则实数 的取值范围是(   )
A . B . C . D .

二、填空题(共4小题)

1、已知 ,且 ,则向量 与向量 的夹角是      
2、已知实数 满足不等式组 ,若直线 把不等式组表示的平面区域分成面积相等的两部分,则       
3、在锐角 中, ,则 的面积是      
4、设 为曲线 上的动点, 为曲线 上的动点,则称 的最小值为曲线 之间的距离,记作 .若 ,则       

三、解答题(共6小题)

1、已知数列 的前 项的和 ,且 .
(1)求数列 的通项公式;
(2)若数列 满足 ,求数列 的前 项的和 .
2、四棱锥 中, ,且 平面 是棱 的中点.

(1)证明: 平面
(2)求三棱锥 的体积.
3、近年电子商务蓬勃发展, 年某网购平台“双 ”一天的销售业绩高达 亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出 次成功交易,并对其评价进行统计,网购者对商品的满意率为 ,对快递的满意率为 ,其中对商品和快递都满意的交易为 次.

附: (其中 为样本容量)

(1)根据已知条件完成下面的 列联表,并回答能否有 的把握认为“网购者对商品满意与对快递满意之间有关系”?


对快递满意

对快递不满意

合计

对商品满意



对商品不满意




合计



(2)为进一步提高购物者的满意度,平台按分层抽样方法从中抽取 次交易进行问卷调查,详细了解满意与否的具体原因,并在这 次交易中再随机抽取 次进行电话回访,听取购物者意见.求电话回访的 次交易至少有一次对商品和快递都满意的概率.
4、已知抛物线 的焦点为 .
(1)若斜率为 的直线 过点 与抛物线 交于 两点,求 的值;
(2)过点 作直线 与抛物线 交于 两点,且 ,求 的取值范围.
5、平面直角坐标系 中,曲线 的参数方程为 为参数),以坐标原点 为极点,以 轴正半轴为极轴,建立极坐标系,曲线 的极坐标方程为 .
(1)写出曲线 的极坐标方程和曲线 的直角坐标方程;
(2)若射线 平分曲线 ,且与曲线 交于点 ,曲线 上的点 满足 ,求 .
6、设函数 .
(1)求不等式 的解集;
(2)若不等式 的解集是 ,求正整数 的最小值.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 安徽省江淮十校2018届高三文数第三次(4月)联考试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;