2020年高考理数真题试卷(新课标Ⅱ)
年级: 学科:数学 类型: 来源:91题库
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。(共12小题)
1、已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则
( )

A . {−2,3}
B . {−2,2,3}
C . {−2,−1,0,3}
D . {−2,−1,0,2,3}
2、若α为第四象限角,则( )
A . cos2α>0
B . cos2α<0
C . sin2α>0
D . sin2α<0
3、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )
A . 10名
B . 18名
C . 24名
D . 32名
4、北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )
A . 3699块
B . 3474块
C . 3402块
D . 3339块
5、若过点(2,1)的圆与两坐标轴都相切,则圆心到直线
的距离为( )

A .
B .
C .
D .




6、数列
中,
,
,若
,则
( )





A . 2
B . 3
C . 4
D . 5
7、如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为( )
A . E
B . F
C . G
D . H
8、设O为坐标原点,直线
与双曲线
的两条渐近线分别交于
两点,若
的面积为8,则C的焦距的最小值为( )




A . 4
B . 8
C . 16
D . 32
9、设函数
,则f(x)( )

A . 是偶函数,且在
单调递增
B . 是奇函数,且在
单调递减
C . 是偶函数,且在
单调递增
D . 是奇函数,且在
单调递减




10、已知△ABC是面积为
的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为( )

A .
B .
C . 1
D .



11、若
,则( )

A .
B .
C .
D .




12、0-1周期序列在通信技术中有着重要应用.若序列
满足
,且存在正整数m,使得
成立,则称其为0-1周期序列,并称满足
的最小正整数m为这个序列的周期.对于周期为m的0-1序列
,
是描述其性质的重要指标,下列周期为5的0-1序列中,满足
的序列是( )







A .
B .
C .
D .




二、填空题:本题共4小题,每小题5分,共20分。(共4小题)
1、已知单位向量a,b的夹角为45°,ka–b与a垂直,则k=.
2、4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.
3、设复数
,
满足
,
,则
=.





4、设有下列四个命题:
p1:两两相交且不过同一点的三条直线必在同一平面内.
p2:过空间中任意三点有且仅有一个平面.
p3:若空间两条直线不相交,则这两条直线平行.
p4:若直线l 平面α,直线m⊥平面α,则m⊥l.
则下述命题中所有真命题的序号是.
① ②
③
④
三、解答题(共5小题)
1、
中,sin2A-sin2B-sin2C=sinBsinC.

(1)求A;
(2)若BC=3,求
周长的最大值.

2、某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi , yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得
,
,
,
,
.





(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi , yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r= ,
=1.414.
3、已知椭圆C1:
(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=
|AB|.


(1)求C1的离心率;
(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
4、如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.
(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;
(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.
5、已知函数f(x)=sin2xsin2x.
(1)讨论f(x)在区间(0,π)的单调性;
(2)证明:
;

(3)设n∈N*,证明:sin2xsin22xsin24x…sin22nx≤
.

四、[选修4-4:坐标系与参数方程](共1小题)
1、已知曲线C1 , C2的参数方程分别为C1:
(θ为参数),C2:
(t为参数).


(1)将C1 , C2的参数方程化为普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1 , C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.
五、[选修4-5:不等式选讲](共1小题)
1、已知函数
.

(1)当
时,求不等式
的解集;


(2)若
,求a的取值范围.
