重庆市两江新区2018-2019学年八年级上学期数学期末考试试卷
年级: 学科:数学 类型:期末考试 来源:91题库
一、单选题(共12小题)
1、某足球生产厂计划生产4800个足球,在生产完1200个后,采用了新技术,工作效率比原计划提高了20%,结果共用了21天完成全部任务.设原计划每天生产x个足球,根据题意可列方程为( )
A .
=21
B .
=21
C .
=21
D .
=21




2、计算(﹣2a2)3的结果为( )
A . ﹣2a5
B . ﹣8a6
C . ﹣8a5
D . ﹣6a6
3、下列交通标志中,是轴对称图形的是( )
A .
B .
C .
D .




4、若分式
有意义,则a的取值范围是( )

A . a=0
B . a=﹣2
C . a≠2
D . a≠0
5、等腰三角形的周长为9cm,其中一边长为2cm,则该等腰三角形的底边长为( )
A . 2cm
B . 3.5cm
C . 5cm
D . 7cm
6、分解因式3a2b﹣6ab+3b的结果是( )
A . 3b(a2﹣2a)
B . b(3a2﹣6a+1)
C . 3(a2b﹣2ab)
D . 3b(a﹣1)2
7、如图,在△ABC中,∠ACB=45°,AD⊥BC于点D,点E为AD上一点,连接CE,CE=AB,若∠ACE=20°,则∠B的度数为( )
A . 60°
B . 65°
C . 70°
D . 75°
8、如图,在△ABC中,BD平分∠ABC,DE∥BC,且交AB于点E,∠A=60°,∠BDC=86°,则∠BDE的度数为( )
A . 26°
B . 30°
C . 34°
D . 52°
9、如图,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于点D,垂足为点E,连接AD,若AD平分∠CAB,BC=6,则BD的长为( )
A . 2
B . 3
C . 4
D . 5
10、若
是完全平方式,
与
的乘积中不含
的一次项,则
的值为( )





A . -4
B . 16
C . 4或16
D . -4或-16
11、如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有( )
A . 8个
B . 7个
C . 6个
D . 5个
12、若数a使得关于x的不等式组
,有且仅有四个整数解,且使关于y的分式方程
=1有整数解,则所有满足条件的整数a的值之和是( )


A . 3
B . 2
C . ﹣2
D . ﹣3
二、填空题(共6小题)
1、计算:4a3b5÷2ab2= .
2、一个多边形的内角和与外角和的差是180°,则这个多边形的边数为 .
3、如图,△ABC是等边三角形,BD为AC边上的中线,点E在BC的延长线上,连接DE,若CE=2,∠E=30°,则线段BC的长为 .
4、若
=2,则分式
的值为 .


5、如图,把三角形纸片ABC折叠,使得点B,点C都与点A重合,折痕分别为DE,MN,若∠BAC=110°,则∠DAM= 度.
6、如图,等边△ABC的边长为2,CD为AB边上的中线,E为线段CD上的动点,以BE为边,在BE左侧作等边△BEF,连接DF,则DF的最小值为 .
三、解答题(共8小题)
1、 2018年我市的脐橙喜获丰收,脐橙一上市,水果店的陈老板用2400元购进一批脐橙,很快售完;陈老板又用6000元购进第二批脐橙,所购件数是第一批的2倍,但进价比第一批每件多了20元.
(1)第一批脐橙每件进价多少元?
(2)陈老板以每件120元的价格销售第二批脐橙,售出
后,为了尽快售完,决定打折促销,要使第二批脐橙的销售总利润不少于480元,剩余的脐橙每件售价最低打几折?(利润=售价-进价)

2、解方程
(1)

(2)

3、如图,△ABC的三个顶点的坐标分别是A(3,3),B(1,1),C(4,–1).
(1)直接写出点A、B、C关于x轴对称的点A1、B1、C1的坐标;A1( )、B1( )、C1( ).
(2)在图中作出△ABC关于y轴对称的图形△A2B2C2.
(3)求△ABC的面积.
4、计算:
(1)(x+2y)2﹣(x+y)(x﹣y)
(2)(
+a﹣4)÷


5、如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.
6、如图,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,B、C、E三点共线,连接DC,点F为CD上的一点,连接AF.
(1)若BE平分∠AED,求证:AC=EC;
(2)若∠DAF=∠AEC,求证:BE=2AF.
7、若一个正整数a可以表示为连续的两个奇数的平方差的形式,如:8=32﹣12 , 16=52﹣32 , 24=72﹣52 , ……,我们则称形如8,16,24这样的正整数a为“奇特数”.
(1)请写出最小的三位“奇特数”,并表示成连续的两个奇数的平方差的形式;
(2)求证:任意一个“奇特数”都是8的倍数;
(3)若一个三位数b为“奇特数”,其百位和个位上的数字相同,十位上的数字比个位上的数字大m(m为正整数),求满足条件的所有三位“奇特数”.
8、如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠CAB=90°,点A,点B的坐标分别为A(0,a),B(b,0),且a,b满足a2+b2﹣4a﹣8b+20=0,AC与x轴交于点D.
(1)求△AOB的面积;
(2)求证:点D为AC的中点;
(3)点E为x轴的负半轴上的动点,分别以OA,AE为直角边在第一、二象限作等腰直角三角形△OAN和等腰直角三角形△EAM,连接MN交y轴于点P,试探究线段OE与AP的数量关系,并证明你的结论.