江西省萍乡市安源区2020年中考数学二模试卷

年级: 学科:数学 类型:中考模拟 来源:91题库

一、单选题(共6小题)

1、下列计算正确的是(   )
A . B . C . D .
2、如图,把△ 沿 对折,叠合后的图形如图所示.若 ,则∠2的度数为(   )

A . 24° B . 35° C . 30° D . 25°
3、 的倒数是(  )
A . B . C . D .
4、下列调查中,调查方式选择正确的是(   )
A . 为了了解某品牌手机的屏幕是否耐摔,选择全面调查 B . 为了了解玉兔号月球车的零部件质量,选择抽样调查 C . 为了了解端午节期间市场上的粽子质量,选择全面调查 D . 为了了解步行街平均每天的人流量,选择抽样调查
5、均匀地向一个容器注水,最后将容器注满,在注水的过程中,水的高度h随时间t的变化如图所示,这个容器的形状可能是(   )

A . B . C . D .
6、如图是一个螺母的示意图,它的俯视图是(   )

 

A . B . C . D .

二、填空题(共6小题)

1、已知m+n=3mn,则 + 的值为      
2、如图,直线过正方形ABCD的顶点B,点A、C到直E的距离分别是1和2,则正方形ABCD面积是      .

图片_x0020_100009

3、分解因式:       .
4、今年世界各地发现新冠肺炎疫情,疫情是由一种新型冠状病毒引起的,疫情发生后,科学家第一时间采集了病毒样本进行研究.研究发现这种病毒的直径约85纳米(1纳米=0.000000001米).数据85纳米用科学记数法可以表示为      米.
5、如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=35°,则∠α的度数为      

6、抛物线表达式C: , 已知点A(0,2),点P是抛物线上一点,若Rt△AOP有一个锐角正切值为 ,则点P的坐标      

三、解答题(共11小题)

1、                  
(1)计算:
(2)如图,已知∠CAE是△ABC的外角,∠1=∠2,AD∥BC,求证:AB=AC.

2、解方程:
3、事业单位人员编制连进必考,现一事业单位需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
 

笔试

面试

体能

84

80

88

94

92

69

81

84

78

(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;
(2)该单位规定:笔试、面试、体能分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.
4、如图,△ABC内接于⊙O,AB=AC,D是AC弧的中点,在下列图中使用无刻度的直尺按要求画图.

(1)在图1中,画出△ABC中AC边上的中线;
(2)在图2中,画出△ABC中AB边上的中线.
5、今年我国许多地方严重的“旱情”,为了鼓励居民节约用水,区政府计划实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式.
6、某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.

校本课程

 频数

 频率

A

36

0.45

B

 

0.25

C

16

b

D

8

 

 合计

a

1

请您根据图表中提供的信息回答下列问题:

(1)统计表中的a      b      
(2)“D”对应扇形的圆心角为      度;
(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;
(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.
7、如图,△ABC中,D是AB边上一点,⊙O过D、B、C三点,∠DOC=2∠ACD=90°.

(1)求证:直线AC是⊙O的切线;
(2)如果∠ACB=75°,⊙O的半径为2,求BD的长.
8、如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形.若显示屏AO与键盘BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,且PD⊥AO(此时点P为最佳视角),点C在OB的延长线上,PC⊥BC,BC=12cm.

(1)当PA=45cm时,求PC的长;
(2)当∠AOC=115°时,线段PC的长比(1)中线段PC的长是增大还是减小?请通过计算说明.(结果精确到0.1cm,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47).
9、如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.

(1)求一次函数,反比例函数的表达式;
(2)求证:点C为线段AP的中点;
(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形.如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.
10、如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别与边AB,BC所在的直线相交,交点分别为E,F.

(1)当PE⊥AB,PF⊥BC时,如图1,则 的值为      
(2)在(1)的基础上,现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求 的值;
(3)若与(2)相比只有如下变化,点P在线段AC上,且AP:PC=1:2,旋转角度α,满足60°<α<90°时,即如图3示, 的值是否变化?证明你的结论.
11、已知抛物线 交x轴于点(0,0)和点 ,抛物线 交x轴于点(0,0)和点 ,抛物线 交x轴于点(0,0)和点 …按此规律,抛物线 交x轴于点(0,0)和点 (其中n为正整数),我们把抛物线 称为系数为a的“关于原点位似”的抛物线族.
(1)试求出b1的值;
(2)请用含n的代数式表示线段 的长;
(3)探究下列问题:

①抛物线 的顶点纵坐标 与a、n有何数量关系?请说明理由;

②若系数为a的“关于原点位似”的抛物线族的各顶点坐标记为(T,S),请直接写出S和T所满足的函数关系式.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 江西省萍乡市安源区2020年中考数学二模试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;