山东省东营胜利油田2018-2019学年九年级上学期数学期中考试试卷
年级: 学科:数学 类型:期中考试 来源:91题库
一、单选题(共10小题)
1、如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②
;③△PMN为等边三角形;④当∠ABC=45°时,BN=
PC.其中正确的个数是( )


A . 1个
B . 2个
C . 3个
D . 4个
2、把一块直尺与一块三角板如图放置,若∠2=130°,则∠1的度数为( )
A . 30°
B . 35°
C . 40°
D . 45°
3、下列说法不一定成立的是( )
A . 若a>b,则a+c>b+c
B . 若a+c>b+c,则a>b
C . 若a>b,则ac2>bc2
D . 若ac2>bc2 , 则a>b
4、一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是( )
A . 亏损20元
B . 盈利30元
C . 亏损50元
D . 不盈不亏
5、关于x的分式方程
的解为负数,则a的取值范围是( )

A .
B .
C .
且
D .
且






6、如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为( )
A . 2:5
B . 3:5
C . 9:25
D . 4:25
7、
的算术平方根是( )

A . ±2
B . 2
C . ±4
D . 4
8、下列计算正确的是( )
A . 2a•3b=5ab
B . a3•a4=a12
C . (﹣3a2b)2=6a4b2
D . a5÷a3+a2=2a2
9、下列说法正确的有( )
A . 正整数 、正分数、和0统称为有理数
B . 正整数、负整数统称为有理数
C . 正有理数、负有理数和0统称有理数
D . 0不是有理数
10、在一次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83,则这组数据的中位数为( )
A . 72
B . 81
C . 77
D . 82
二、填空题(共8小题)
1、已知圆锥的底面半径是3,高是4,则这个圆锥的全面积是 .
2、讲究卫生要勤洗手,人的一只手上大约有28 000万个看不见的细菌,用科学记数法表示一只手上大约有 个细菌.
3、因式分解:x2y﹣y3= .
4、如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为 .
5、如图,∠BAC=30°,M为AC上一点,AM=2,点P是AB上的一动点,PQ⊥AC , 垂足为点Q , 则PM+PQ的最小值为 .
6、网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .
7、《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为 .
8、如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣
x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=﹣
x上,依次进行下去…若点B的坐标是(0,1),则点O2020的纵坐标为 .


三、解答题(共7小题)
1、如图,在Rt△ABC中,
,AD平分∠BAC,交BC于点D,点O在AB上,⊙O经过A、D两点,交AC于点E,交AB于点F.

(1)求证:BC是⊙O的切线;
(2)若⊙O的半径是2cm,E是弧AD的中点,求阴影部分的面积(结果保留π和根号)
2、某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元。
(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?
(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?
3、
(1)计算:|﹣
|﹣
+2sin60°+(
)﹣1+(2﹣
)0




(2)先化简,再求值:
÷(1﹣
),其中a=
﹣2.



4、某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).
组别 | 时间(小时) | 频数(人数) | 频率 |
A | 0≤t<0.5 | 20 | 0.05 |
B | 0.5≤t<1 | a | 0.3 |
C | 1≤t<1.5 | 140 | 0.35 |
D | 1.5≤t<2 | 80 | 0.2 |
E | 2≤t<2.5 | 40 | 0.1 |
请根据图表中的信息,解答下列问题:
(1)表中的a= ,将频数分布直方图补全 ;
(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?
(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.
5、如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB═
,反比例函数y=
的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为
.



(1)求反比例函数的解析式;
(2)求直线EB的解析式;
(3)求S△OEB .
6、如图
(提出问题)
(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
7、如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求抛物线的解析式和直线AC的解析式;
(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;
(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.