辽宁省大连2020年数学中考模拟试卷(4月)

年级: 学科:数学 类型:中考模拟 来源:91题库

一、选择题(共10小题)

1、用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为( )
A . B . C . D .
2、如图所示,a和b的大小关系是(    )

图片_x0020_100001

A . a>b B . a<b C . 2a=b D . 2b=a
3、我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x个,买苦果y个,则下列关于x、y的二元一次方程组中符合题意的是(   )
A . B . C . D .
4、如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )

A . 30° B . 40° C . 50° D . 60°
5、下列运算不正确的是(    )
A . a2•a3=a5 B . (y34=y12 C . (﹣2x)3=﹣8x3 D . x3+x3=2x6
6、如图,菱形ABCD的对角线ACBD相交于点O , 过点AAHBC于点H , 连接OH , 若OB=4,S菱形ABCD=24,则OH的长为(    )

A . 3 B . 4 C . 5 D . 6
7、(a,﹣6)关于x轴对称的点的坐标为( )
A . (﹣a,6) B . (a,6) C . (a,﹣6) D . (﹣a,﹣6)
8、下列立体图形中,左视图是三角形的是( )
A . B . C . D .
9、某班15名同学为灾区捐款,他们捐款数额统计如下:

捐款数额(元)

5

10

20

50

100

人数(名)

2

4

5

3

1

下列说法正确的是( ).

A . 众数是100 B . 平均数是20 C . 中位数是20 D . 极差是20
10、如图,矩形OABC的边OA在x轴上,OA=8,OC=4,把△ABC沿直线AC折叠,得到△ADC,CD交x轴于点E,则点E的坐标是(   )

A . (4,0) B . (3,0) C . (0,3) D . (5,0)

二、填空题(共6小题)

1、如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为      m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)

2、分解因式6xy2-9x2y-y3 =       .
3、如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是      cm2

4、移动互联网已经全面进入人们的日常生活.截止2018年12月,全国4G用户总数947000 000,这个数用科学记数法表示为      .
5、用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x的方程为      .
6、如图,两块三角尺的直角顶点靠在一起,BC=3,EF=2,G 为 DE 上一动点,把三角尺DEF 绕直角顶点 F 旋转一周,在这个旋转过程中,B,G 两点的最小距离为      .

三、解答题(共10小题)

1、时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:

球类名称

乒乓球

羽毛球

排球

篮球

足球

人数

42

       

15

33

       


解答下列问题:

(1)这次抽样调查中的样本是      
(2)统计表中,              
(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.
2、甲、乙两公司为“2019东台西溪·国际半程马拉松比赛”各制作6400个相同的纪念牌,已知甲公司的人数比乙公司人数少20%,乙公司比甲公司人均少做20个,甲、乙两公司各有多少人?

3、计算:
(1)( + + 5)÷ ×
(2)(-3)2 + -|1-2 |-( -3)0
4、如图,一次函数y1=kx+b的图象与反比例函数 的图象交于点A(﹣2,﹣5),C(5,n),交y轴于点B,交x轴于点D.

图片_x0020_4

(1)求反比例函数 和一次函数y1=kx+b的表达式;
(2)连接OA,OC,求△AOC的面积;
(3)根据图象,直接写出y1>y2时x的取值范围.
5、解一元一次不等式组:
6、如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
7、如图,在平行四边形ABCD中,E,F分别是对角线BD上的两点,且BE=DF.求证:AE=CF.

8、已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.

(1)求证:AC·BC=BE·CD;
(2)已知CD=6、AD=3、BD=8,求⊙O的直径BE的长.
9、在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)

(1)写出y与x之间的函数表达式;
(2)画出此函数的图象.
10、如图,点A,B,C都在抛物线y=ax2﹣2amx+am2﹣9(其中a>0)上,AB∥x轴,点P是抛物线的顶点,tan∠PBA=2,∠BAC=45°.

(1)填空:抛物线的顶点P的坐标为      (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为10,当2m﹣3≤x≤2m+5时,y的最小值为5,求m的值.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 辽宁省大连2020年数学中考模拟试卷(4月)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;