人教新课标A版必修1数学3.2.2函数模型的应用实例同步检测
年级:高一 学科:数学 类型:同步测试 来源:91题库
一、选择题(共17小题)
1、国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元部分的14%纳税;超过4 000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为( )
A . 2800元
B . 3000元
C . 3800元
D . 3818元
2、若函数
,则f(log43)=( )

A .
B .
C . 3
D . 4


3、已知函数f(x)=
若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )

A . (3,4)
B . (2,3)
C . (1,2)
D . (0,1)
4、已知f(x)=
则方程f(x)=2的实数根的个数是( )

A . 0
B . 1
C . 2
D . 3
5、拟定从甲地到乙地通话m分钟的电话费由f(m)=1.06(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数(例如[3]=3,[3.7]=4,[3.1]=4),则从甲地到乙地通话时间为5.5分钟的话费为( )
A . 3.71
B . 3.97
C . 4.24
D . 4.77
6、植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为( )
A . (1)和(20)
B . (9)和(10)
C . (9)和(11)
D . (10)和(11)
7、函数y=x4﹣8x2+2在[﹣1,3]上的最大值为( )
A . 11
B . 2
C . 12
D . 10
8、用篱笆围成一个面积为196m2的矩形菜园,所用篱笆最短为( )
A . 56m
B . 64m
C . 28m
D . 20m
9、不等式x2+2x+a≥﹣y2﹣2y对任意实数x、y都成立,则实数a的取值范围是( )
A . a≥0
B . a≥1
C . a≥2
D . a≥3
10、函数
的值域为( )

A . (﹣∞,+∞)
B . [﹣2,+∞)
C . (0,+∞)
D . [﹣2,0)
11、某大学的信息中心A与大学各部门,各院系B、C、D、E、F、G、H、I之间拟建立信息联网工程,实际测算的费用如图所示(单位:万元),请观察图形,可以不建部分网线而使得信息中心与各部门、各院系都能联通(直接或中转),则最少的建网费用是( )
A . 12万元
B . 13万元
C . 14万元
D . 16万元
12、100名学生报名参加A、B两个课外活动小组,报名参加A组的人数是全体学生人数的
,报名参加B组的人数比报名参加A组的人数多3,两组都没报名的人数是同时报名参加A、B两组人数的
多1,求同时报名参加A、B两组人数( )


A . 36
B . 13
C . 24
D . 27
13、某厂一月份的产值为15万元,第一季度的总产值是95万元,设月平均增长率为x , 则可列方程为( )
A . 95=15(1+x)2
B . 15(1+x)3=95
C . 15(1+x)+15(1+x)2=95
D . 15+15(1+x)+15(1+x)2=95
14、如果10N的力能使弹簧压缩10cm,为在弹性限度内将弹簧从平衡位置拉到离平衡位置6cm处,则克服弹力所做的功为( )
A . 0.28J
B . 0.12J
C . 0.26J
D . 0.18J
15、一个人以6米/秒的匀速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始作变速直线行驶(汽车与人的前进方向相同),汽车在时刻t的速度为v(t)=t米/秒,那么,此人( )
A . 可在7秒内追上汽车
B . 可在9秒内追上汽车
C . 不能追上汽车,但其间最近距离为14米
D . 不能追上汽车,但其间最近距离为7米
16、由于生产电脑的成本不断降低,若每年电脑价格降低
,设现在的电脑价格为8100元,则3年后的价格可降为( )

A . 2400元
B . 2700元
C . 3000元
D . 3600元
17、我市出租车在3km以内,起步价为12.5元,行程达到或超过3km后,每增加1km加付2.4元(不足1km亦按1km计价),昨天汪老师乘坐这种出租车从长城大厦到莲花北,恰巧沿途未遇红灯,下车时支付车费19.7元,汪老师乘出租车走了xkm的路,则( )
A . 5<x≤7
B . 5<x≤6
C . 5≤x≤6
D . 6<x≤7
二、填空题(共7小题)
1、对a,b∈R,记max{a,b}=
函数f(x)=max{|x+1|,|x﹣2|}(x∈R)的最小值是 .

2、拟定从甲地到乙地通话m分钟的电话费由f(m)=0.6(0.5•[m]+1)(元)决定,其中m>0,[m]是大于或等于m的最小整数,(如[3]=3,[3.8]=4,[3.1]=4,)则从甲地到乙到通话时间为5.5分钟的电话费为 .
3、已知函数f(x)的图象关于直线x=2对称,且在区间(﹣∞,0)上,当x=﹣1时,f(x)有最小值3,则在区间(4,+∞)上,当x= 时,f(x)有最 值为 .
4、某种储蓄按复利计算时,若本金为a元,每期利率为r,则n期后本利和为 .
5、汽车的最佳使用年限是使年均消耗费用最低的年限(年均消耗费用=年均成本费用+年均维修费),设某种汽车的购车的总费用为50000元;使用中每年的保险费、养路费及汽油费合计为6000元;前x年的总维修费y满足y=ax2+bx , 已知第一年的总维修费为1000元,前两年的总维修费为3000元,则这种汽车的最佳使用年限为 年.
6、某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x= 吨.
7、若关于x的方程9﹣|x﹣2|﹣4×3﹣|x﹣2|﹣a=0,有实数根,则实数a的范围 .