湖北省潜江市十校联考2018届九年级上学期数学期中考试试卷

年级: 学科:数学 类型:期中考试 来源:91题库

一、单选题 (共9小题)

1、某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为(  )

A . y=60(300+20x) B . y=(60﹣x)(300+20x) C . y=300(60﹣20x) D . y=(60﹣x)(300﹣20x)
2、若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为(  )

A . x1=0,x2=6 B . x1=1,x2=7 C . x1=1,x2=﹣7 D . x1=﹣1,x2=7
3、如图,抛物线y1= (x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:

①a= ;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2

其中正确结论的个数是(   )

A . 1个 B . 2个 C . 3个 D . 4个
4、下面四个手机应用图标中,属于中心对称图形的是(   )

A . B . C . D .
5、如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是(   )

A . 4 B . 3 C . 2 D . 1
6、抛物线 (m是常数)的顶点在(   )
A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
7、在⊙O中,弦AB的长为6,圆心O到AB的距离为4,则⊙O的半径为(   )
A . 10 B . 6 C . 5 D . 4
8、下列说法正确的是(   )
A . 将抛物线 向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是y=(x-4)2-2 B . 方程x2+2x+3=0有两个不相等的实数根 C . 半圆是弧,但弧不一定是半圆. D . 平分弦的直径垂直于弦,并且平分这条弦所对的两条弧
9、已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为(   )
A . (1,-5) B . (3,-13) C . (2,-8) D . (4,-20)

二、解答题 (共8小题)

1、

已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠C=40°,求∠E及∠AOC的度数.

 

2、如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣ x+3交于C、D两点.连接BD、AD.

(1)求m的值.
(2)抛物线上有一点P,满足S△ABP=4S△ABD , 求点P的坐标.
3、工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)

(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
4、根据要求,解答下列问题.仔细观察小聪同学所求的三个方程的解.

①方程x2-2x+1=0的解为x1=1,x2=1;②方程x2-3x+2=0的解为x1=1,x2=2;③方程x2-4x+3=0的解为x1=1,x2=3; …………

(1)根据以上方程特征及其解的特征,请猜想:

①方程x2-9x+8=0的解为      

②关于x的方程      的解为x1=1,x2=n.

(2)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.
5、如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:

①画出△ABC关于y轴对称的△A1B1C1 , 并写出A1的坐标.

②画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2 , 并写出A2的坐标.

③画出△A2B2C2关于原点O成中心对称的△A3B3C3 , 并写出A3的坐标.

6、已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1 , x2
(1)求m的取值范围;
(2)若x1 , x2满足3x1=|x2|+2,求m的值.
7、如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.

(1)求圆弧所在的圆的半径r的长;
(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?
8、已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中, ,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.

(1)如图1,若点B在OP上,则①AC      OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是      
(2)将图1中的等腰Rt△ABO绕O点顺时针旋转a( ),如图2,那么(1)中的结论②是否成立?请说明理由;
(3)将图1中的等腰Rt△ABO绕O点顺时针旋转a( ),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式      

三、填空题 (共5小题)

1、一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是      

2、若点M(3,a﹣2),N(b,a)关于原点对称,则a+b=      
3、已知⊙O的半径为10,弦AB∥CD,AB=12,CD=16,则AB和CD的距离为      
4、关于x的一元二次方程 有两个不相等的实数根,则a的取值范围是      
5、若将图中的抛物线y=x2-2x+c向上平移,使它经过点(2,0),则此时的抛物线位于x轴下方的图象对应x的取值范围是      .

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 湖北省潜江市十校联考2018届九年级上学期数学期中考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;