2019年高考理数真题试卷(北京卷)
年级: 学科:数学 类型: 来源:91题库
一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(共8小题)
















①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
②曲线C上任一点到原点的距离都不超过 ;
③曲线C所围成的“心形”区域的面积小于3.
其中,所有正确结论的序号是( )
二、填空题共6小题,每小题5分,共30分。(共6小题)
①l⊥m:②m∥α:③l⊥α.
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: 。
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为 。
三、解答题共6小题,共80分。(共6小题)

(I)求b,c的值;
(II)求sin(B-C)的值.

(I)求证:CD⊥平面PAD;
(II)求二面角F-AE-P的余弦值;
(III)设点G在PB上,且 .判断直线AG是否在平面AEF内,说明理由。
支付金额(元) 支付方式 |
(0,1000] |
(1000,2000] |
大于2000 |
仅使用A |
18人 |
9人 |
3人 |
仅使用B |
10人 |
14人 |
1人 |
(I)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(II)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(III)已知上个月样本学生的支付方式在本月没有变化。现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元,根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
(I)求抛物线C的方程及其准线方程;
(II)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=-1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.

(I)求曲线y=f(x)的斜率为1的切线方程;
(II)当x∈[-2,4]时,求证:x-6≤f(x)≤x;
(IlI)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a). 当M(a)最小时,求a的值.
(I)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;
(II)已知数列{an}的长度为P的递增子列的末项的最小值为am0 , 长度为q的递增子列的末项的最小值为an0 , 若p<q,求证:am0<an0;
(III)设无穷数列{an}的各项均为正整数,且任意两项均不相等。若{an}的长度为s的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有2s-1个(s=1.2.…),求数列{an}的通项公式。