云南省玉溪市易门县2018-2019学年八年级上学期数学期中考试试卷

年级: 学科:数学 类型:期中考试 来源:91题库

一、单选题(共7小题)

1、等腰三角形的一个角是80°,则它的底角是()

A . 50° B . 80° C . 50°或80° D . 20°或80°
2、一个三角形的两边长为3和8,第三边长为奇数,则第三边长为(   )
A . 5或7 B . 7或9 C . 7 D . 9
3、如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有(   )

A . 1个 B . 2个 C . 3个 D . 4个
4、现有四根木棒,长度分别为4,6,8,10,从中任取三根木棒,能组成三角形的个数为(    )
A . 1个 B . 2个 C . 3个 D . 4个
5、下列图形分别是四个城市电视台的台徽,其中为轴对称图形的是(   )
A . 图片_x0020_100001 B . 图片_x0020_100002 C . 图片_x0020_100003 D . 图片_x0020_100004
6、对于任意三角形的高,下列说法不正确的是(   )
A . 直角三角形只有一条高 B . 锐角三角形有三条高 C . 任意三角形都有三条高 D . 钝角三角形有两条高在三角形的外部
7、用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为(   )(用含n的代数式表示).

A . 2n+1 B . 3n+2 C . 4n+2 D . 4n-2

二、填空题(共7小题)

1、如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=      .

2、如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配.( )

A . B . C . D . ①和②
3、若A(x,3)关于y轴的对称点是B(-2,y),则x=      ,y=      ,点A关于x轴的对称点的坐标是      .
4、如图:ΔABE≌ΔACD,AB=10cm,∠A=60°,∠B=30°,则AD=      cm,∠ADC=      

5、如图,已知线段AB、CD相交于点O,且∠A=∠B,只需补充一个条件      ,则有△AOC≌△BOD.

图片_x0020_861435844

6、如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有      处。

7、如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了      m

图片_x0020_627297114

三、解答题(共9小题)

1、△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.


①作出△ABC关于x轴对称的△A1B1C1 , 并写出点C1的坐标;

②作出△ABC关于y对称的△A2B2C2 , 并写出点C2的坐标.

2、一个多边形的内角和比它外角和的3少180°,求这个多边形的边数.
3、如图,AD为△ABC的中线,BE为△ABD的中线.

(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.
4、如图,已知:E是∠AOB的平分线上一点,ECOBEDOACD是垂足,连接CD , 且交OE于点F

(1)求证:OECD的垂直平分线.
(2)若∠AOB=60°,请你探究OEEF之间有什么数量关系?并证明你的结论.
5、如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数。

6、如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.


求证:

(1)△ABC≌△DEF;
(2)BE=CF
7、如图,AB⊥AC,CD⊥BD,AC、BD相交于点O.

图片_x0020_1324921124

①已知AB=CD,利用可以判定△ABO≌△DCO;

②已知AB=CD,∠BAD=∠CDA,利用可以判定△ABD≌△DCA;

③已知AC=BD,利用可以判定△ABC≌△DBC;

④已知AO=DO,利用可以判定△ABO≌△DCO;

⑤已知AB=CD,BD=AC,利用可以判定△ABD≌△DCA;

8、完成下面的证明过程

已知:如图,AB∥CD,AE⊥BD于E,CF⊥BD于F,BF=DE.

图片_x0020_77471173

求证:△ABE≌△CDF.

证明:∵AB∥CD,∴∠1=      .(两直线平行,内错角相等)

∵AE⊥BD,CF⊥BD,

∴∠AEB=      =90°.

∵BF=DE,∴BE=      .

在△ABE和△CDF中,

      ;②      ;③      

∴△ABE≌△CDF      .

9、如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点。试探索BM和BN的关系,并证明你的结论。

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 云南省玉溪市易门县2018-2019学年八年级上学期数学期中考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;