新疆乌鲁木齐天山区2019届数学中考一模试卷

年级: 学科:数学 类型:中考模拟 来源:91题库

一、单选题(共10小题)

1、下列说法正确的是(  )

A . 掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件 B . 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S2=0.4,S2=0.6,则甲的射击成绩较稳定 C . “明天降雨的概率为”,表示明天有半天都在降雨 D . 了解一批电视机的使用寿命,适合用普查的方式
2、将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为(   )

A . 1 B . C . D . 4
3、计算(﹣x23的结果是(    )
A . ﹣x6 B . x6 C . ﹣x5 D . ﹣x8
4、在﹣7,5,0,﹣3这四个数中,最大的数是(   )
A . ﹣7 B . 5 C . 0 D . ﹣3
5、如图,∠1=57°,则∠2的度数为(   )

A . 120° B . 123° C . 130° D . 147°
6、如图所示,直线l沿x轴正方向向右平移2个单位,得到直线l′,则直线l′的解析式为(  )

A . y=2x+4 B . y=-2x+4 C . y=2x-4 D . y=-2x-2
7、一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是(   )
A . 3 B . 4 C . 6 D . 12
8、A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用时9小时,已知水流速度为4千米/时,已知水流速若设该轮船在静水中的速度为x千米/时,则可列方程( )
A . B . C . D .
9、如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(   )

A . 3 B . 4﹣ C . 4 D . 6﹣2
10、已知在△ABC中,∠BAC=90°,M是边BC的中点,BC的延长线上的点N满足AM⊥AN.△ABC的内切圆与边AB,AC的切点分别为E,F,延长EF分别与AN,BC的延长线交于P、Q,则 =(   )
A . 1 B . 0.5 C . 2 D . 1.5

二、填空题(共5小题)

1、函数y= 的自变量x的取值范围是      
2、如图,点O是矩形ABCD的对角线AC的中点,M是AD的中点,若OM=3,BC=10,则OB的长为      .

3、某校七年级学生有 a 人,已知七、八、九年级学生人数比为 2:3:3,则该校学生共有      人.
4、如图,扇形纸片AOB中,已知∠AOB=90º,OA=6,取OA的中点C,过点C作DC⊥OA交 于点D,点F是 上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD、DF、FA依次剪下,则剩下的纸片(阴影部分)面积是      .

5、如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点( ,0).有下列结论:①abc>0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是      (填写正确结论的序号).

三、解答题(共9小题)

1、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.
(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?
(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?
2、计算:sin30°﹣  +(π﹣4)0+|﹣ |.
3、如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.

(1)求证:PD是⊙O的切线;
(2)求证:△PBD∽△DCA;
(3)当AB=6,AC=8时,求线段PB的长.
4、先化简,再求值(1﹣ )÷ ,其中x=4.
5、抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).

(1)求抛物线的解析式;
(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;
(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
6、一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:

(1)慢车的速度为      km/h,快车的速度为      km/h;
(2)解释图中点C的实际意义并求出点C的坐标;
(3)求当x为多少时,两车之间的距离为500km.
7、如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.

(1)求证:BF=CD;
(2)连接BE,若BE⊥AF,∠BFA=60°,BE= ,求平行四边形ABCD的周长.
8、校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:

请你根据统计图回答下列问题:

(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;
(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?
(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?
(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.
9、如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.

(1)求桥DC与直线AB的距离;
(2)现在从A地到达B地可比原来少走多少路程?

(以上两问中的结果均精确到0.1km,参考数据: ≈1.14, ≈1.73)

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 新疆乌鲁木齐天山区2019届数学中考一模试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;