江西省南昌市2019届高三理数二模考试试卷

年级: 学科:数学 类型: 来源:91题库

一、单选题(共12小题)

1、已知集合 ,则 等于(  )
A . B . C . D .
2、已知 ,复数 ,则 (  )
A . B . C . D .
3、已知函数 ,命题 ,若 为假命题,则实数 的取值范围是(  )
A . B . C . D .
4、已知抛物线 的焦点为 ,点 在该抛物线上,且 轴上的投影为点 ,则 的值为(  )
A . 1 B . 2 C . 3 D . 4
5、一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是(  )

A . B . C . D .
6、已知函数 )的部分图像如图所示,若将 图像上的所有点向左平移 个单位得到函数 的图像,则函数 的单调递增区间是(  )

A . B . C . D .
7、已知 ,则实数 的大小关系是(  )
A . B . C . D .
8、唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为 ,若将军从点 处出发,河岸线所在直线方程为 ,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为(  )
A . B . C . D .
9、已知 中, ,点 是边 的中点,则 等于(  )
A . 1 B . 2 C . 3 D . 4
10、已知双曲线 焦距为 ,圆 与圆 外切,且 的两条渐近线恰为两圆的公切线,则 的离心率为(  )
A . B . C . D .
11、已知 是定义在 上的函数,且对任意的 都有 ,若角 满足不等式 ,则 的取值范围是(  )
A . B . C . D .
12、平行六面体 的底面是边长为4的菱形,且 ,点 在底面的投影 的中点,且 ,点 关于平面 的对称点为 ,则三棱锥 的体积是(  )

A . 4 B . C . D . 8

二、填空题(共4小题)

1、已知 ,则 等于      
2、已知实数 满足 ,则 的最小值是      
3、已知 ,则       
4、江先生朝九晚五上班,上班通常乘坐公交加步行或乘坐地铁加步行.江先生从家到公交站或地铁站都要步行5分钟.公交车多且路程近一些,但乘坐公交路上经常拥堵,所需时间(单位:分钟)服从正态分布 ,下车后从公交站步行到单位要12分钟;乘坐地铁畅通,但路线长且乘客多,所需时间(单位:分钟)服从正态分布 ,下地铁后从地铁站步行到单位要5分钟.下列说法:①若8:00出门,则乘坐公交不会迟到;②若8:02出门,则乘坐地铁上班不迟到的可能性更大;③若8:06出门,则乘坐公交上班不迟到的可能性更大;④若8:12出门,则乘坐地铁几乎不可能上班不迟到.从统计的角度认为以上说法中所有合理的序号是      

参考数据:若 ,则 .

三、解答题(共6小题)

1、已知数列 是公差不为零的等差数列, ,且存在实数 满足 .
(1)求 的值及通项
(2)求数列 的前 项和 .
2、如图,矩形 中, 是边 的三等分点.现将 分别沿 折起,使得平面 、平面 均与平面 垂直.

(1)若 为线段 上一点,且 ,求证: 平面
(2)求二面角 的正弦值.
3、已知椭圆 ,点 的长轴上运动,过点 且斜率大于0的直线 交于 两点,与 轴交于 点.当 的右焦点且 的倾斜角为 时, 重合, .
(1)求椭圆 的方程;
(2)当 均不重合时,记 ,若 ,求证:直线 的斜率为定值.
4、某品牌餐饮公司准备在10个规模相当的地区开设加盟店,为合理安排各地区加盟店的个数,先在其中5个地区试点,得到试点地区加盟店个数分别为1,2,3,4,5时,单店日平均营业额 (万元)的数据如下:

加盟店个数 (个)

1

2

3

4

5

单店日平均营业额 (万元)

10.9

10.2

9

7.8

7.1

(参考数据及公式: ,线性回归方程 ,其中 .)

(1)求单店日平均营业额 (万元)与所在地区加盟店个数 (个)的线性回归方程;
(2)该公司根据回归方程,决定在其他5个地区中,开设加盟店个数为5,6,7的地区数分别是2,1,2.小赵与小王都准备加入该公司的加盟店,但根据公司规定,他们只能分别从这5个地区的30个加盟店中随机抽取一个加入.记事件 :小赵与小王抽取到的加盟店在同一个地区,事件 :小赵与小王抽取到的加盟店预计日平均营业额之和不低于12万元,求在事件 发生的前提下事件 发生的概率.
5、已知在平面直角坐标系 中,直线 的参数方程为 为参数),以坐标原点为极点, 轴非负半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,点 的极坐标是 .
(1)求直线 的极坐标方程及点 到直线 的距离;
(2)若直线 与曲线 交于 两点,求 的面积.
6、已知 为正实数,函数 .
(1)求函数 的最大值;
(2)若函数 的最大值为1,求 的最小值.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 江西省南昌市2019届高三理数二模考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;