浙江省绍兴市诸暨市浣江教育集团2019届数学中考模拟试卷(3月)
年级: 学科:数学 类型:中考模拟 来源:91题库
一、单选题(共10小题)
1、﹣3的倒数是( )
A . ﹣3
B . 3
C . ﹣
D .


2、如图,在平面直角坐标系中,矩形ABCD的面积为定值,它的对称中心恰与原点重合,且AB∥y轴,CD交x轴于点M,过原点的直线EF分别交AD、BC边于点E、F,以EF为一边作矩形EFGH,并使EF的对边GH所在直线过点M,若点A的横坐标逐渐增大,图中矩形EFGH的面积的大小变化情况是( )
A . 一直减小
B . 一直不变
C . 先减小后增大
D . 先增大后减小
3、某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( )
A . 甲
B . 甲与丁
C . 丙
D . 丙与丁
4、如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( )
A . 55°
B . 110°
C . 120°
D . 125°
5、下列运算正确的是( )
A . a2+a3=a5
B . a(b﹣1)=ab﹣a
C . 3a﹣1=
D . (3a2﹣6a+3)÷3=a2﹣2a

6、统计数据显示,2018年绍兴市进出口贸易总额达2200亿元,其中2200亿元用科学记数法表示为( )
A . 2.2×103元
B . 22×108元
C . 2.2×1011元
D . 0.22×1012元
7、下图中几何体的主视图是( ).
A .
B .
C .
D .




8、浙江广厦篮球队5名场上队员的身高(单位:cm)是:184,188,190,192,194.现用一名身高为170cm的队员换下场上身高为190cm的队员,与换人前相比,场上队员的身高( )
A . 平均数变小,方差变小
B . 平均数变小,方差变大
C . 平均数变大,方差变小
D . 平均数变大,方差变大
9、在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A .
B .
C . 34
D . 10


10、将抛物线y=2x2﹣1沿直线y=2x方向向右上方平移2
个单位,得到新抛物线的解析式为( )

A . y=2(x+2)2+3
B .
C .
D . y=2(x﹣2)2+3


二、填空题(共6小题)
1、分解因式:ab2﹣9a= .
2、在学校组织的游艺晚会上,掷飞镖游艺区游戏区规则如下,如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况,如图所示,依此方法计算小芳的得分为 .
3、如图,五边形ABCDE是正五边形.若l1∥l2 , 则∠1-∠2= °.
4、某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为 .
5、如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1﹣S2+S3+S4等于 .
6、如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为y=
,在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O′B′.设P(t,0)当O′B′与双曲线有交点时,t的取值范围是 .

三、解答题(共8小题)
1、菱形ABCD中、∠BAD=120°,点O为射线CA 上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F.
(1)如图①,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA三条段段之间的数量关系;
(2)如图②,点O在CA的延长线上,且OA=
AC,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;

(3)点O在线段AC上,若AB=6,BO=2
,当CF=1时,请直接写出BE的长.

2、如图,在方格纸中,点A,B,P,Q都在格点上.请按要求画出以AB为边的格点四边形.
(1)在图甲中画出一个▱ABCD,使得点P为▱ABCD的对称中心;
(2)在图乙中画出一个▱ABCD,使得点P,Q都在▱ABCD的对角线上.
3、
(1)计算

(2)解分式方程:
=2

4、今年我市将创建全国森林城市,提出了“共建绿色城”的倡议.某校积极响应,在3月12日植树节这天组织全校学生开展了植树活动,校团委对全校各班的植树情况道行了统计,绘制了如图所示的两个不完整的统计图.
(1)求该校的班级总数;
(2)将条形统计图补充完整;
(3)求该校各班在这一活动中植树的平均数.
5、如图,已知点
在反比例函数
的图象上,过点
作
轴,垂足为
,直线
经过点
,与
轴交于点
,且
,
.











(1)求反比例函数
和一次函数
的表达式;


(2)直接写出关于
的不等式
的解集.


6、为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°。
(1)求∠MCD的度数;
(2)求摄像头下端点F到地面AB的距离。(精确到百分位)
(参考数据;sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
7、对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.
(1)计算:F(143),F(624);
(2)若m是“相异数”,m的百位上的数字为7,十位上的数字比个位上的数字多3,且F(m)=22,“相异数”m是多少?
(3)若s,t都是“相异数”,其中s=100a+35,t=160+b(1≤a≤9,1≤b≤9,a,b都是正整数),当F(s)+F(t)=22时,求a+b的值.
8、如图①,直线
表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线
上,小明从点A出发,沿公路
向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路
上的点G处,最后沿公路
回到点A处.设AE=x米





(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,
(1)求图②中线段MN所在直线的函数表达式;
(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.