2016年安徽省亳州市利辛县中疃中学中考数学模拟试卷
年级:中考 学科:数学 类型:中考模拟 来源:91题库
一、单选题(共10小题)




二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )
如图,在Rt△ABC中,∠C=90°,CDEF为内接正方形,若AE=2cm,BE=1cm,则图中阴影部分的面积为( )λ


如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3 , …组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是( )
二、填空题(共4小题)
如图,点A、B、C在⊙O上,∠A=50°,则∠BOC度数为 .
①MN⊥PQ,则MN=PQ;
②MN=PQ,则MN⊥PQ;
③△AMQ≌△CNP,则△BMP≌△DNQ;
④△AMQ∽△CNP,则△BMP∽△DNQ
其中所有正确的结论的序号是 .
三、解答题(共8小题)
(1)求此二次函数的图象与x轴的交点坐标;
(2)将y=x2的图象经过怎样的平移,就可以得到二次函数y=x2﹣2x﹣1的图象.
如图,所示的正方形网格中,△ABC的顶点均在格点上,在所给平面直角坐标系中解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)作出将△ABC绕原点O按逆时针方向旋转90°后所得的△A2B2C2;
(3)写出点A1、A2的坐标.
如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,求点C的坐标.
如图,反比例函数y=(k<0)的图象与矩形ABCD的边相交于E、F两点,且BE=2AE,E(﹣1,2).
(1)求反比例函数的解析式;
(2)连接EF,求△BEF的面积.
“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,
≈1.73)
如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E
(1)求证:△ACE∽△CBE;
(2)若AB=8,设OE=x(0<x<4),CE2=y,请求出y关于x的函数解析式.
日产量x(千件/台) | … | 5 | 6 | 7 | 8 | 9 | … |
次品数p(千件/台) | … | 0.7 | 0.6 | 0.7 | 1 | 1.5 | … |
已知每生产1千件合格的元件可以盈利1.6千元,但没生产1千件次品将亏损0.4千元.(利润=盈利﹣亏损)
(1)观察并分析表中p与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出p(千件)与x(千件)的函数解析式;
(2)设该工厂每天生产这种元件所获得的利润为y(千元),试将y表示x的函数;并求当每台机器的日产量x(千件)为多少时所获得的利润最大,最大利润为多少?