2015年湖北省黄石市阳新县东春中学中考数学逼真模拟试卷(二)
年级:中考 学科:数学 类型:中考模拟 来源:91题库
一、单选题(共10小题)
某物体的侧面展开图如图所示,那么它的左视图为( )














如图,在△ABC中,∠BAC=50°,把△ABC沿EF折叠,C对应点恰好与△ABC的外心O重合,则∠CFE的度数是( )
如图是某朋的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22),若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( )
对某市8所学校抽取共1 000名学生进行800米跑达标抽样检测.结果显示该市达标学生人数超过半数,达标率达到52.5%.图l、图2反映的是本次抽样中的具体数据.
根据以上信息,下列判断:①小学高年级被抽检人数为200人;②小学、初中、高中学生中高中生800米跑达标率最大;③小学生800米跑达标率低于33%;④高中生800米跑达标率超过70%.其中判断正确的有( )
二、填空题(共5小题)
册数 | 0 | 1 | 2 | 3 | 4 |
人数 | 2 | 13 | 9 | 22 | 4 |
在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终到达C港,设甲乙两船行驶的时间为x(h),与B港的距离为y(km),它们间的函数关系如图所示,若两船的距离不超过10km时能够相互望见,则甲乙两船可以互相望见的时间共有 小时.
如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是 .
三、解答题(共8小题)


如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.
(1)用适当的方法写出点A(x,y)的所有情况.
(2)求点A落在第三象限的概率.
如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点C的坐标为(﹣1,1),将Rt△ABC按一定的规律变换:第一次,将Rt△ABC沿AC边翻折,得Rt△AB1C;第二次,将Rt△AB1C绕点B1逆时针旋转90°,得Rt△A1B1C1;第三次,将Rt△A1B1C1沿A1C1边翻折,得Rt△A1B2C1;第四次,将Rt△A1B2C1绕点B2逆时针90°,得Rt△A2B2C2…如此依次下去
(1)试在图中画出Rt△A1B1C1和Rt△A2B2C2 , 并写出A1的坐标 ;
(2)请直接写出在第11次变换后所得的点B的对应的点的坐标是 .
如图1,在Rt△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O切BC于点D,交AC于点E,且AD=BD.
(1)求证:DE∥AB;
(2)如图2,连接OC,求cos∠ACO的值.
”4.20芦山地震”发生后,各地积极展开抗震救援工作,一支救援车队经过如图1所示的一座拱桥,拱桥的轮廓是抛物线型,拱高6m,跨度20m,相邻两支柱间的距离均为5m,将抛物线放在所给的直角坐标系中(如图2所示),拱桥的拱顶在y轴上.
(1)求拱桥所在抛物线的解析式;
(2)求支柱MN的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2米的隔离带),其中的一条行车道能否并排行驶宽2m、高2.4m的三辆汽车(隔离带与内侧汽车的间隔、汽车间的间隔、外侧汽车与拱桥的间隔均为0.5m)?请说说你的理由.
如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,抛物线y=x2的顶点在直线AO上运动,与直线x=2交于点P,设平移后的抛物线顶点M的横坐标为m.
(1)如图1,若m=﹣1,求点P的坐标;
(2)在抛物线平移的过程中,当△PMA是等腰三角形时,求m的值;
(3)如图2,当线段BP最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.