2022年初中数学浙教版八年级下册2.4一元二次方程根与系数的关系 能力阶梯训练——普通版
年级: 学科: 类型:同步测试 来源:91题库
一、单选题(共6小题)
1、一元二次方程x2+x-2=0的两根之积是( )
A . -1
B . -2
C . 1
D . 2
2、一元二次方程x2+px=2的两根为x1 , x2 , 且x1=﹣2x2 , 则p的值为( )
A . 2
B . 1
C . 1或﹣1
D . ﹣1
3、已知
,
则
最小值是( )



A . 6
B . 3
C . ﹣3
D . 0
4、关于
的方程
有两个不相等的实根
、
,且有
,则
的值是( )






A . 1
B . -1
C . 1或-1
D . 2
5、若关于x的方程
的解中,仅有一个正数解,则m的取值范围是( )

A .
B .
C .
D .




6、小宁在研究关于x的一元二次方程x2-4x+m=0时,得到以下4个结论:
①若m=4,则方程有两个相等的实数根;②若m<0,则方程必有两个异号的实数根;③若m<4,则方程的两个实数根不可能都大于2;④若m<-5,则方程的两个实数根一个小于5,另一个大于5.其中结论正确的个数有( )
A . 1个
B . 2个
C . 3个
D . 4个
二、填空题(共5小题)
1、已知a,b是方程x2﹣x﹣3=0的两个根,则代数式a2+b+3的值为 .
2、已知分式
,当x=2时,分式无意义,则a= ;当a为a<6的一个整数时,使分式无意义的x的值共有 个.

3、若关于
的方程
的两个根互为倒数,则
= 。



4、已知
是关于x的一元二次方程.若方程的两个实数根为x1 , x2 , 且
,则a= 。


5、一个一元二次方程的二次项系数为1,其中一个根是-3,另一个根是2,则这个方程是 。
三、解答题(共5小题)
1、已知关于x的一元二次方程x2﹣2x+m+2=0有两个不等的实数根x1和x2
(1)求m的取值范围并证明x1x2=m+2;
(2)若|x1﹣x2|=2,求m的值.
2、已知关于x的方程(m2﹣1)x2﹣3(3m﹣1)x+18=0有两个正整数根(m是正整数).△ABC的三边a、b、c满足
, m2+a2m﹣8a=0,m2+b2m﹣8b=0.

求:(1)m的值;(2)△ABC的面积.
3、已知关于x的方程x2+5x-p2=0,
(1)求证:无论p取何值方程,总有两个不相等的实数根,;
(2)设方程两个实数根为x1、x2 , 当x1+x2= x1x2时,求p的值
4、已知关于x的一元二次方程(x﹣k)2﹣2x+2k=0有两个实数根x1、x2.
(1)求实数k的取值范围;
(2)当实数k为何值时,代数式x12+x22﹣x1•x2+1取得最小值,并求出该最小值.
5、已知方程x2+bx+a=0①,和方程ax2+bx+1=0②(a≠0).
(1)若方程①的根为x1=2,x2=3,求方程②的根;
(2)当方程①有一根为x=r时,求证x=
是方程②的根;

(3)若a2b+b=0,方程①的根是m与n,方程②的根是s和t,求
的值.
